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 different resources may have different sets of properties,

 resources may or may not have types,

 multi-value properties may exist
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Motivation (1/2)

We live in the era of data explosion. At the same

time, more and more data sources are being produced as

linked data, using the Resource Description Format (RDF).

However, the exploitation and the application of analytics

over RDF data, is not so straightforward, since its structure is

not so simple:
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 Even though, many analytical tools have been

developed, they:

Motivation (2/2)

Most of the 

existing

analytical

tools

focus on 

relational 

data

work with a

single 

homogeneous 

data set

do not offer 

flexible choices of

dimension, meas

ure and 

aggregation

neither support 

multiple central 

origins, nor RDF

semantics

may demand a 

deep knowledge 

of specific query 

languages



What do we need?
 An analytical tool that would:

 be applied over one or multiple linked data sets, 

 not demand any programming skill, 

 visualize data intuitively and will support 

collaborative data exploration.

What are we doing?
 Currently, we are investigating an approach based on:

 a high level query language, for analytics over RDF

graphs [N. Spyratos et al. 2018], and

 an interactive 3D system [M.E. Papadaki et al. 2018] for

visualizing linked data.
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 It can be applied over a data set that is structured or

unstructured, homogeneous or heterogeneous, centrally

stored or distributed.
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HIFUN [N. Spyratos et al. 2018], is a high level functional

query language for defining analytic queries over big data

sets, independently of how these queries are evaluated.

Definition of HiFun (1/3)
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Definition of HiFun (2/3)
 Data set assumptions

 consists of uniquely indentified items

 has a set of attributes,

 an attribute is viewed as a function from the data set to

some domain of values: nameOfAttribute: D  value

 e.g. date: D String
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Definition of HiFun (3/3)
 The set of attributes (direct or derived) that analysts are

interested in is called context and D the origin of it.

The attributes that their values appear on the invoices are

called direct, while those that can be computed from them are

called derived (e.g. the attributes m and y can be extracted

from d).
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Ordered triple

A query Q in HiFun is viewed as an ordered triple, such that g

and m are attributes of the data set D, and op is an aggregate

operation applicable on m-values.

Attributes Aggregate Operation

Q = (g, m, op) 

11

Definition of Hifun Query
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HIFUN: Evaluation of Analytic 

Query (1/4)

grouping function

a) group the items of the data set D using the values of g (i.e.

items with the same g-value gi are grouped together)

Ordered triple

Q = (g, m, op) 

12
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HIFUN: Evaluation of Analytic 

Query (2/4)

b) in each group of the items created, extract from D the m-

value of each item in the group

measuring function

Ordered triple

Q = (g, m, op) 

13
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HIFUN: Evaluation of Analytic 

Query (3/4)

c) aggregate the m-values obtained in each group to obtain a

single value vi

aggregate operation

Ordered triple

Q = (g, m, op) 

14
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HIFUN: Evaluation of Analytic 

Query (4/4)

c) aggregate the m-values obtained in each group to obtain a

single value vi

aggregate operation

Ordered triple

Q = (g, m, op) 

15

Such a query can be evaluated easily using either SQL or Map-

Reduce.
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Application of HiFun to Relational 

Data (1/5)

16

Example: suppose that, we would like to know the total

quantities of products, delivered to each branch, for the

following relational data, using HiFun.

D Date Month Year Branch Product Quantity

invoiceID1 date1 month1 year1 branch1 product1 100

invoiceID2 date2 month2 year2 branch1 product2 200

invoiceID3 date3 month3 year3 branch2 product3 300

invoiceID4 date4 month4 year4 branch3 product4 400
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Application of HiFun to Relational 

Data (2/5)

Each invoice would be a uniquely identified item, that has a

set of attributes, each of which could be seen as a Hifun

function from dataset D to some domain of values.

D Date Month Year Branch Product Quantity

invoiceID1 date1 month1 year1 branch1 product1 100

invoiceID2 date2 month2 year2 branch1 product2 200

invoiceID3 date3 month3 year3 branch2 product3 300

invoiceID4 date4 month4 year4 branch3 product4 400
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Q = (b, m, op) 

1. Grouping (b)

branch1: ID1, ID2

branch2: ID3

branch3: ID4

a) group together all the invoices referring to the same

branch

18

Application of HiFun to Relational 

Data (3/5)
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Q = (b, q, op) 

2. Measuring (q) 

branch1: 100, 200

branch2: 300

branch3: 400

b) find the quantity corresponding to each invoice in the

group

19

1. Grouping (b)

branch1: ID1, ID2

branch2: ID3

branch3: ID4

Application of HiFun to Relational 

Data (4/5)
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3. Reduction (sum)

branch1: 300

branch2: 300

branch3: 400

c) in each group of the previous step, we sum up the

quantities found

Q = (b, q, sum) 

20

1. Grouping (b)

branch1: ID1, ID2

branch2: ID3

branch3: ID4

2. Measuring (q) 

branch1: 100, 200

branch2: 300

branch3: 400

Application of HiFun to Relational 

Data (5/5)
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ex:Invoice

ex:hasDate ex:inQuantity

xsd:Integer

ex:Branch ex:Product

ex:ID4

ex:hasDate ex:inQuantity

400

ex:branch3

What if the data was

represented as an

RDF graph?

Application of HIFUN to

semantic data (1/8)

2019-05-09

Each property would

correspond to a Hifun

attribute, having as

source the domain of

that property and

target the range of it.

sc
h
e
m

a
d
a
ta

ex:product4

xsd:date
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ex:Invoice

ex:hasDate ex:inQuantity

xsd:Integer

ex:Branch ex:Product

ex:ID4

ex:hasDate ex:inQuantity

400

ex:branch3 ex:product4

In fact, one could also

derive easily attributes

from literals (e.g. we

could extract from date

the attributes of

“month” and “year”).

Application of HIFUN to

semantic data (2/8)
sc

h
e
m

a
d
a
ta

xsd:date

2019-05-09
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ex:Invoice

ex:hasDate

ex:Date

ex:ID4

ex:hasDate

Application of HIFUN to

semantic data (3/8)
sc

h
e
m

a
d
a
ta

ex:hasYear

Now, imagine that

“date” was

represented as a

blank node. Could

HiFun be applied

over such data?

xsd: integer

ex:hasYearxsd: integer

month4

year4
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ex:Invoice

ex:hasDate

ex:Date

ex:ID4

ex:hasDate

Application of HIFUN to

semantic data (4/8)
sc

h
e
m

a
d
a
ta

ex:hasYear

Yes, since the

attributes of it

would correspond to

1-1 functions.

xsd: integer

ex:hasYearxsd: integer

month4

year4
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ex:Invoice

ex:hasDate

ex:Date

ex:ID4

ex:hasDate

sc
h
e
m

a
d
a
ta

ex:hasYear

xsd: integer

ex:hasYearxsd: integer

month4

year4

Application of HIFUN to

semantic data (5/8)

For example, date’s

functions would be:

hasDate(ID4) = _:b1

hasMonth(_:b1) = month4

hasYear(_:b1) = year4
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ex:Invoice

ex:Customer

ex:Customer

ex:ID4

Application of HIFUN to

semantic data (6/8)
sc

h
e
m

a
d
a
ta

ex:nationality ex:Customer

ex:customer4

But, what if an

attribute was not

functional (i.e.

nationality)?

ex:nationality

(owl:allValuesFrom)

ex:Nationality

ex:German

ex:Greek

ex:Italian
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ex:Invoice

ex:Customer

ex:Customer

ex:ID4

Application of HIFUN to

semantic data (7/8)
sc

h
e
m

a
d
a
ta

true

ex:Customer

Then, such an attribute could still be expressed in Hifun, if the

number of its values was finite.

ex:Nationality

ex:nationality

ex:isGreek ex:nationality

xsd:boolean

ex:nationality

(owl:allValuesFrom)

true

false

Possible transformation of multi-valued property to boolean-valued properties.

ex:customer4



 So far we,

 have examined the basics for applying HIFUN over RDF

 have designed and implemented a HIFUN2SPARQL

converter and have applied it over RDF data expressed

using the RDF Data Cube vocabulary

 Issues that worth further research:

 multi-valued attributes

 the interplay with inference

 complex dimension hierarchies

 heterogeneous graphs
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Application of HIFUN to

semantic data (8/8)
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Evaluating HIFUN Queries in

SPARQL (1/7)

We could encode each Hifun query Q as a SPARQL group-by

query over a triple store, as follows:

HIFUN Query

Q = (e, e’, op)

SPARQL Query

Select ?target(e), op(?target(e’)) As ?Result 

WHERE {..}

GROUP BY ?target(e)

31



Maria-Evangelia Papadaki, ISIP, May 2019

Query: find the total quantities of products, group by branch.

Results:

SELECT ?branch SUM(?quantity) AS ?TOTALS

WHERE{

?ex:ID ex:branch ?branch .

?ex:ID xsd:quantity ?quantity.

}

GROUP BY ? branch

32

Evaluating HIFUN Queries in

SPARQL (2/7)

HIFUN Query

Q = (b, q, SUM)
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Result restricted-query

Suppose now that, we would like to set restrictions to the

final results. The query would be formulated, as follows:

SPARQL Query

Select ?target(e), op(?target(e’)) As

?Result

WHERE {..}

Group by ?target(e)

HAVING(op(?target(e’))op’)

HIFUN Query

Q = (e, e’, op)/F

33

Evaluating HIFUN Queries in

SPARQL (3/7)
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Query: find all the branches that received more than 300

products, group by branch.

Results:

SELECT ?branch SUM(?quantity) AS

?TOTALS

WHERE{

?ex:ID ex:branch ?branch.

?ex:ID ex:quantity ?quantity.

}

GROUP BY ?branch

HAVING(SUM(?quantity) > 300)

34

Evaluating HIFUN Queries in

SPARQL (4/7)

HIFUN Query

Q = 

(b, q, SUM)/300
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Attribute restricted-query

Suppose now that, we would like to apply restrictions at the

level of the attributes and filter the results, internally. The

query would be formulated, as follows:

HIFUN Query

Q = (e/E, e’, op)

SPARQL Query

Select ?target(e), op(?target(e’)) As

?Result

WHERE {

FILTER(op(?target(e’ )) op’)

}

Group by ?target(e)

35

Evaluating HIFUN Queries in

SPARQL (5/7)
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Query: find the total quantities of products that received by

branch “branch1”, group by branch.

Results:

SELECT ?branch SUM(?quantity) AS ?TOTALS

WHERE{

?ex:ID ex:branch ?branch.

?ex:ID ex:quantity ?quantity.

FILTER regex((?branch), “branch1", "i")}

GROUP BY ?branch

36

Evaluating HIFUN Queries in

SPARQL (6/7)

HIFUN Query

Q = (b/ “branch1", q, SUM)
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Query: find the total quantities of products that received per

branch, group by month.

Results:

SELECT ?month ?branch (SUM(?quantity)

AS ?TOTALS )

WHERE {

?ex:ID ex:hasDate ?date .

?date ex:month ?month .

?ex:ID ex:branch ?branch .

?ex:ID ex:quantity ?quantity .}

GROUP BY ?month ?branch

37

Evaluating HIFUN Queries in

SPARQL (7/7)

HIFUN Query

Q = (bom, q, SUM)





 Generally, the results of OLAP usually are visualized using:

 2D plots (in normal and/or log scale)

 Pie charts

 Histograms and bar charts

 Scatter plots etc.
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When the data that is visualized is not too many, then the

existing visualizations are adequate.

40

Total quantities of products, which were sold per branch, group by product (for 50 branches).
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In our work, we plan to investigate visualizations appropriate

also for power law distributions.
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When the number of data is big, the result of is not so 

informative.
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Total quantities of products, which were sold per branch, group by product (for 1000 branches).
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Traditional plots vs. the proposed method:
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 The relative sizes are more 

clear

 The number of values is more 

evident

 It is like “coiling” the long 

tail  of the normal plot

 Its complexity is linear

 Moreover

 The 3rd dimension can be 

exploited for visualizing an 

additional function

 An interactive environment 

allows the user to zoom in any 

area and explore the space
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Ref: [Papadaki et. Al. 2018]
An application that visualizes

Only the datasets and their connections

Is accessible at www.ics.forth.gr/isl/3DLod/

http://www.ics.forth.gr/isl/3DLod/
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 Several models, languages and tools have been developed

for data analysis.

 however, these tools are not adequate for applying

analytics over RDF data.

 Also, the existing visualization tools are not so

informative, when the number of the results is too big.

 So, we are investigating an approach based on:

 a high level query language, for analytics over RDF

graphs and

 a 3D interactive system for visualizing linked data.
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Concluding Remarks
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 We could extend our application to support:

 more complex analytical queries over RDF Graphs

 incremental algorithms

 Also, we could design more layout algorithms appropriate

for analytics

 and perhaps provide visualizations with immersion, for

the intuitive and collaborative interpretation of the

results.
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Future Work
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Links to tools 

3DLod: www.ics.forth.gr/isl/3DLod/
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