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Remake of “Le mariage de la carpe et du lapin” ?

Literally : The marriage of carp and rabbit

(or : A square peg in a round hole)

French expression used to illustrate a union between two different
things and by extension, an impossible alliance by nature

Informal talk, ongoing work

Source :
http://www.expressions-francaises.fr/expressions-l/

864-le-mariage-de-la-carpe-et-du-lapin.html
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Machine Learning and Data Dependencies

In the sequel, to keep the presentation simple :

Machine learning = supervised learning

Data Dependencies = Functional Dependencies

What would be their lowest common denominator ?
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Underlying background
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Back to school : function definition (1/2)

In mathematics, a function was originally the idealization of how a
varying quantity depends on another quantity.
For example, the position of a planet is a function of time.

A function is a process or a relation that associates each element x
of a set X, the domain of the function, to a single element y of
another set Y (possibly the same set), the codomain of the
function.

Source :
https://en.wikipedia.org/wiki/Function_(mathematics)

5

https://en.wikipedia.org/wiki/Function_(mathematics)


ML and DB

Function definition (2/2)

A function is uniquely represented by its graph which is the set of
all pairs (x , f (x)). When the domain and the codomain are sets of
numbers, each such pair may be considered as the Cartesian
coordinates of a point in the plane.
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Introduction

Supervised classification and functional
dependencies

Let’s start the premises of the wedding :-)
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Introduction

Supervised Classification
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Introduction

Learning algorithm definition

Given a set of N training examples of the form
{(x1, y1), ..., (xN , yN)} such that xi is the feature vector of the i-th
example and yi is its label (i.e., class)
A learning algorithm seeks a function g : X → Y , where X is the
input space and Y is the output space.
The function g is an element of some space of possible functions
G , usually called the hypothesis space.
It is sometimes convenient to represent g using a scoring function
f : X ×Y → R such that g is defined as returning the y value that
gives the highest score :

g(x) = arg max
y

f (x , y)

Source :
https://en.wikipedia.org/wiki/Supervised_learning
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Introduction

Learning algorithm with DB notation

Let R0 = {
X︷ ︸︸ ︷

A1, . . . ,An, C︸︷︷︸
Y

} be a relation schema.

Let r0 be a relation over R0, i.e. a set of examples (tuples)

A learning algorithm seeks a function
g : dom(A1), . . . , dom(An)→ dom(C ), where
dom(A1)× . . .× dom(An) is the input space and dom(C ) is the
output space.

It learns a function from the examples of the active domain,

The function is expected to generalize well to other
(unknown) examples (from the domain)

Such a function could be a polynom, an exponential, an integral,
. . . or just a black box (e.g. neural networks, support vector
machine) !
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Introduction

Functional dependencies
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Introduction

Functional dependencies (1/2)

Let R be a relation schema and X ,Y ⊆ R.
A functional dependency is an expression of the form X → Y ,
satisfied in every possible relation r over R.

r |= X → Y iff for all t1, t2 ∈ r

If for all A ∈ X , t1[A] = t2[A] then for all B ∈ Y , t1[B] = t2[B]

Turns out to be a very general notion, related to implications and
functions
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Introduction

Functional dependencies (2/2)

FD as implications

a b a → b
0 0 1
0 1 1
1 0 0
1 1 1

Many connections with lattice
theory, formal concept analysis
(Galois connection) and logics
(see for ex [?])

FD as functions

r |= A1, . . . ,An → C iff there exists a function from
adom(r ,A1)× . . .× adom(r ,An) to adom(r ,C )

A1, . . . ,An is a key in πA1,...,An,C (r)
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Introduction

Main differences between supervised classification and
functional dependencies (1/2)

Data dependencies do not care about the data values
themselves : they only care about their comparisons

if t1.age = t2.age then ...

if abs(t1.age - t2.age)≤ 2 then ...

Learning algorithms care about the data values to draw their
conclusions

if age≤ 18 then ...

Looks like a bad news
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Introduction

Main differences (2/2)

A classification model defines a function learned from a set of
examples

The satisfaction of a functional dependency in a relation
defines the existence of a function

For a new (and unseen) feature vector, a classification model
predicts a single C -value, while the satisfaction of a FD does not
predict anything !

Looks like another bad news !
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Introduction

Synthesis

Existence of a function on one side,
identification of a function on the other

One is clearly more difficult than the other !

What does the existence of function mean in a learning context ?
What can we draw ?
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Introduction

A typical data science scenario

Let us consider a simplified supervised classification scenario ;

Data preprocessing : Experts spend a lot of time to gather
their data, to integrate them, to do feature engineering ... At
the end, they have a dataset (training/test or k-fold)

Learning algorithms : Then they apply many of them to build
classification models. They pick up the best one wrt
robustness.

It might be possible to learn a function in a training dataset ...
in which a function does not exist !
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Introduction

Current technologies for data science

Technological stacks for ML – from integrated platforms such as
Azure, to more technical stacks – bring to every data scientist the
ability to run this (bad) scenario . . .
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Introduction

Interest of FD for supervised classification

At some point in a supervised classification scenario, it makes
sense to take care about the existence of a function, before trying
to identify one of them !

The data makes it possible to know whether a function exists
or not, whatever the form of the function : polynomial, triple
integrals, . . .

Propositions :

Data cleansing could be guided by the existence of functions,
through the notion of counter-examples
⇒ very powerful mechanism for interacting with domain
experts
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Introduction

Conclusion

The marriage is going to complicated, but still not impossible !

Seems to be “common sense” to check the existence of a
function in data before trying to learn a function from data !

Not sure at all that data scientists worldwide are aware of
this !

Despite their inherent differences, FDs may help supervised
learning

Intimately related to how data is prepared for learning, i.e. the
data preprocessing step.
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Introduction

Ongoing work

How to measure the feasibility of ML for a given dataset ?

How to optimally group together similar raw values such that
the existence of a function is guaranteed ?

Data visualization opportunities to identify counter-examples
of a given function (or FD).
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Introduction

Thank you

Merci
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